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ON FIXED-INTERVAL MINIMUM SYMBOL ERROR PROBABILITY DETECTION

Consider a data communications model in which the observed process is
r(t) = S(t,b) + n(t) -MT ¢ t ¢ (M+2)T (1)

where n(t) is zero-mean white Gaussian noise (spectral height of NO/Z)' T is
the symbol interval duration and S(t,b) is a linearly modulated K—user

information-bearing signal which can be expressed as

M K
S(t,0) = £ T by(i) se(t - iT - ©,) (2)
i=—M k=1 X k k

where

b= (b(i) = [by(i), ..., bg(D)IT, &= -, ..., M};

>

and b, (i) € A, s, (t) (assumed to be zero outside a finite interval of positive
real line) and Ty € [0,T) are the ith bit, the signal waveform and the delay
{modulo T with respect to an arbitrary reference) respectively of the kth
user. It is easy to see that the usual models for asynchronous multiple-
access communications {1] and for PAM subject to finite—length intersymbol

interference [2] are encompassed by the above model.

In this report, we present a forward-backward algorithm that offers MAP
symbol~by~symbol detection upon observation of the whole received process,

i.e., it solves for

b (i) € arg max Plby(i) = 8 | r(t), -MT < t < (M#2)T] (3)
a

k=1, ..., K
1=—M. s e e M-

or equivalently

i ®



g

2
b (i) € arg max > expl ﬁ“ 2(p) 1] (4)
a€A b o
s.t. bn(i)=a
where
"M T M M T
Q) =2 % p(i)y(i) - I b (DHG-j)b() , (5)
i=-M i=~M j=-M

and y(i) = [yl(i)' e yK(i)]T is the set of outputs of the K matched filters

th

corresponding to the i symbol, i.e.,

t, +(i+1)T
Yk( i) = ftk+i-r r(t) sk(t - iT - tk) de, (6)
k

and the K x K correlation matrices H(i) are defined by

T
(i) = s . (t) s.(t + iT + v, ~ T.) dt. (7
i 0o Kk i k7

Because of the assumed finite length of the signals sk(t)' there exists an

integer m such that

B(i) = 0 for |il > m. (8)

The set S = AKxm will be referred to as the state-space, and the subsets

of admissible preceding and next states for a given o € S are denoted by1

P(c) = (x €8, s.t, xi*l = gb, { =1 m-1) ? fecnasion tor
’ by ’ LR I NTIS GRA&I
DTIC TAB

i i+l Unanneunced ]
N(e) = (x € 5, s.t. x o =1, ..., ml). Justification

By
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If c € S and z € Ak then define the scalar,

m .
V(o,2) = exp[—s‘L 2(H(0)z +2 & H(m-j+ 1)ad)].
0 j=1

Equipped with the above definitions, we can state our solution to (4):

Algorithm
arg max by explﬁl— 2(p)] =
a€A b 0
s.t. bk(i)=a
arg max z Fi(c) B; (o) (9)
a€A a€s
s.t. d:=g
where F

k(-) and Bk(-) are defined through the forward and backward recursions:

F (o) = expl & y0(K)o®) £ F._.(x) V(x,0™ (10)
k No x€P(g) X1

B, (o) =& (x) V(o,x® expl &y (k)x®] (11)
109 2ok Ny

and the initial conditions:

1 5 T(i)ob - T z iTgei—i) o
Fi(o) = explg-(2 I y(ilet - I p o "H(i-j)a’], k¥ { @ (12a)
0 i=m-k+1 i=m-k+1 j=m-k+1
Bﬂ =1, (12b)
Proof

First, organizing the terms in the sum of (4), we have that

§ expl ﬂ; 2(p)] =
s.t, bk(i)-.




X z

o€S M, M .
s.t. O':=a 'b‘ew- (6'1)

expl B}; a1, (13)

where we have used the notation

wisd(g,x) = {{b(i), ..., b(j)} s.t. b(n) € AK for n = is00es

and [b(k-m+1l) ... b(k)] = o},

i.e., the set of all symbol subsequences, whose components k-m+l, ..., k coin-

cide with a given state o € S,

Using the fact that H(i) = HT(—i) (see (7)), it is straightforward to

check that
M M T M - i-1
T T p (i) HGi-j) b(§) =X p (i)[H(O) B(1) +2 T H(i~j) b(j)],
i=-M j=-M i=—M i=X
hence we have
by expl - a(p)} =
N, ©'24
vev MM (g, 5)
2 ¥ 1 1 ki
by exp[ﬁa k:M b (K)(y(k) - 3 H(O)b(k) + _Zu B(k-j) b(j))]
TR J=-
pev M Mg, 4)
2 & 7 1 k-1
pX explﬁz xzu b (B (y(k) - 3 H(O)b(X) + H(k-j) b(j))] °
. == j=-
v¥eigg, )
, M T 1 k-1
s exp[-N;k b . b (k) (y(K) - 3 H(O)b(K) + Iu H(k-j) b(j))] (14)
=4 e
'14'1.“(0.1) * ]

where the last equality follows from property (8).

It remains to show that




both terms in the right hand side of (14) correspond to Fi(g) and B, (o)

respectively, as defined by (10) - (12)., To that end, we can write

2 & 7 1 k-1
b expl = I b (K)(y(k) - 53 BH(Ob(k) + I H(k-j) b(j))] =
wvMig, i) 0 k=M j=M
m R
T z explﬁz— ™ T(yi) - %H(O) o" + I Hm-j+1)x)] -
€P(c) -M,i-1,_ . 0 j=1
x W reml(z,i-1)
2 i1 o 1 k-1
exp[ - £ b (k) (y(k) - 5 H(Ob(K) + T H(k~j)b(j))]
0 k=M j=M
and the recursive expression (10) follows (for m ¢ k),
Analogously,
2 ¥ g 1 k-1
. T expl = T MK (y(k) - 3 B(O)b(K) + T H(k-j)b(j))]
wi-M(g,i-1) 0 k=i j==M
-5 _ s expl & ™y(i) - & B(o) ™+ 5 Hajened] -
xeN(o) witl.M(g 4 0 j=1
2 ¥ 7 1 k-1
explF~ T b (k)(y(k) - 7 B(O)b(k) + T H(k-j)b(j))] .
0 k=i+l j=M

Hence, comparing with (11) and (12b) we can identify

2 ¥ 7T 1 k-1
B (o) = 5 expl & I b (K)(y(k) - 5 H(O)b(k) + T H(k-
0 k=i+l j=M

RIS RRD!

'i+1'u(c,i)

and the claim is proved.

The forward—-backward structure of the above fixed-interval symbol-by-
symbol optimum detection algorithm resembles the well-known solution for
fixed-interval smoothing (e.g. (3]), the main difference being the indepen—

dence of the forward and backward recursions. In fact, the existence of such




algorithms for Markovian decision problems can be traced back to the work by
Chang and Hancock [4], and is concisely explained in Forney [5, App.l; see

also [6] for a recent application of this ides.

Of particular interest here is the work by Hayes et _L.‘ {7), in which
they propose an algorithm for solving the minimum symbol error probability
problem for our same model (in the special case of 1 user). In this algo-
rithm, the 1likelihood of every possible value of each symbol is computed by
deleting all the trellis states that are not congruent with such value and
then running a forward recursiom similar to (10)., Noticing that at every step
the recursion is common for future symbols, the number of computations can be

halved, A comparison between the computational complexities of the algorithm

by Hayes et al. and the ome proposed here seems in order.

The quantities exp[%%-yr(k)-z], and V(o,z) with 6 € S and z € AK. are

0
common to both algorithms; the fiist can be computed efficiently digitally or
analogically for every input vector and for every symbol combination and the

set of second quantities can be precomputed and stored since it does not

‘depend on the data. In any case, the time and space costs incurred in the

above computations should be added to those that follow.

Employing the notation, L = lAlx, every step of the forward and backward
recursions entails per state: L + 1 and 2L multiplications, respectively, and
L - 1 additions, i.e., (3L + 1)L™ multiplications and (2L - 2)L™ additionms.
The final product of the forward and backward quantities requires one multi-
plication per state, i.e., L® multiplications per step, and the computation of
the likelihood for each symbol value requires L®/|Al - 1 additions, i.e., L™ -

IA]l per step.
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If the algorithm by Hayes et al. is implemented with a fixed delay of
MZ’ then every step of the recursion therein is analogous to our forward
recursion and requires L ~ 1 additions and L + 1 multiplications, per state.
However, the state trellis is different for each symbol, and the number of
additions and multiplications per state must be multiplied by (1 + MzL)-
Finally, every possible symbol value requires L™ - 1 additions in order to

obtain its likelihood. ([7, step 3, p. 155]1). The final step of both algo-

rithms is to choose the largest of |Al quantities per symbol.

Regarding global storage requirements, our algorithm needs to store the
entire sequences of values of Fi(a) and/or Bi(g), i.e., 2ML® quantities. On
the other hand, the algorithm in [7] requires the storage of L®(1 + MZL)

values. Summarizing, both algorithms have the following complexities:

HAYES et al. FORWARD-BACEWARD
ADDITIONS L™ ,L - My + 1) - 1 L®2L - 1) - lal
(per symbol)

MULTIPLICATIONS L™1 + MyL) (L + 1) L®(3L + 2)
(per symbol)
STORAGE L™(1 + M,L) L™(2M)
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The key parameter in the comparison of both algorithms is L; if L is
large (as is the <case in multi-access communications with more than 3 or 4
users) then the forward-backward algorithm offers computational savings of the
order of IM,; if L is small (e.g., binary single—user commuaications) then the
computational effort of the algorithm ian [7) is roughly that of the forward-
backward algorithm times M2' Note incidentally that since the forward and

backward recursions are independent, there exists, obviously, the possibility

of implementing them in parallel.

With respect to the storage requirements, the comparison depends on the
relative values of the fixed delay Mz and M, the fixed length of the data
record processed in batch. In general, the choice of M for the fixed interval
algorithm will be dictated by the storage capabilities, the allowable decision
delay, and the performance degradation due to the partitioning of the data
record. It is not unreasonable to expect that comparable levels of degrada-
tion will be attained by algorithms whose respective fixed delay Mz and (half
of) fixed 1length M <coincide. Notice that minimum symbol error probability
detection can only be justified as an alternative to optimum sequence detec~
tion (via Viterbi algorithm) in low signal-to-noise ratio situations since
otherwise the optimum decisions according to both criteria do not differ
appreciably. The relevance of this point stems from the fact that the delay
or data record length required for achieving a given degree of performance

degradation increase as the signal-to-noise ratio decreases.
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